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Abstract 

The principle and theoretical description of zone focusing in electrophoretic migration in a tapered capillary are 
presented. The model involves moving zones which gradually reduce their volume. The variance of a single 
Gaussian zone is discussed to illustrate the dynamics of this process. In order to derive the solution of the 
continuity equation, previous models of idealized focusing of ampholytes were modified to represent zone 
electrophoretic focusing in migration in a capillary with a shallow taper. The relations between the departure from 
the local steady state, the ratio of the inlet to outlet capillary cross-section, the ampholyte effective mobility and the 
pH gradient were established. They allow a comparison of described process with conventional isoelectric focusing 
and also the selection of the operating conditions such that the departure from the local steady state can be 
decreased to an acceptable extent. The relations predict that focusing in the capillary with a shallow taper should 
maintain constant the ratio of the actual zone width to the local steady state width, provided that the local capillary 
cross-section is indirectly proportional to the migration length coordinate. The significance of some assumptions 
needed for the model formulation is analysed. Numerical examples demonstrate the feasibility of the method. 

1. Introduction 

The trace determination of ionizable com- 
pounds often needs some means of sample 
concentration. Focusing electrophoretic methods 
as isotachophoresis (ITP) and isoelectric focus- 
ing (IEF) advantageously combine the powerful 
focusing and separation features. ITP also per- 
mits the transfer of analytes from a large capil- 
lary cross-section to a smaller one [l-3] whikh is 
used also in the combination of ITP with capil- 
lary zone electrophoresis (CZE) [4-71. It has 
been shown [8] that some modes of IEF, includ- 
ing IEF with electrophoretic mobilization [9-111, 
have certain features similar to ITP. Therefore, it 

seems reasonable to examine the possibilities of 
focusing ampholytes in a capillary with a non- 
constant cross-section. However, it is known 
from ITP that migration through a tapered 
channel brings about deterioration of the 
boundaries and zone broadening, which needs to 
be improved by using a coupled capillary with a 
constant cross-section [3]. Svensson [12] men- 
tioned the idea of the numerical solution of 
focusing in a channel with a non-constant cross- 
section. 

This contribution presents a simplified theoret- 
ical model that allows the shape and the degree 
of the continuous capillary taper to be related to 
other operational parameters of the focusing 
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process. The model used is consistent with the 
simplified approaches used previously to develop 
the theory of IEF in a channel with a constant 
cross-section [8,12-161. 

2. Description of model 

Let us examine focusing with net electropho- 
retie transport in a capillary with a non-constant 
cross-section A (see Fig. 1). The initial configu- 
ration consists of the near steady-state zone 
surrounded by the background of volume V,, 
which spans the pH gradient with a total pH 
difference 6(pH). The background together with 
the ampholytic analyte is positioned between the 
leading and terminating electrolytes, which ad- 
just the mean gradient effective mobility, ii, 
and, together with the amount of the back- 
ground components, the pH gradient volume. At 
time t = t,, the zone position is y = yO, where the 
capillary cross-section is A,. Owing to the con- 
stant electric current, I, the whole gradient 
including the analyte zone moves toward the 
detection point with coordinate y, and cross- 
section A, <A,,. Together with the movement 
to positions with a smaller cross-section, the 
length of the pH gradient gradually increases. In 

this way, the local steepness of the pH gradient, 
d(pH)ldy, decreases and the field strength, E, 
around the zone increases with decrease in A. 
The changes in the concentration profile due to 
the migration into the narrower cross-section 
unbalance the establishment of the steady state. 
The ampholyte tends to respond by re-establish- 
ing a new steady state but even as this proceeds, 
the unbalancing effect of the taper continues. 
With ongoing transport into locations with a 
smaller cross-section, the steady state remains 
just out of reach. 

To allow the approximate solution of the 
process described above, the previous simple 
models of IEF [8,12-161 were used here for the 
initial considerations. They include the displace- 
ment of the gradient components due only to the 
electrophoretic transport so that the local ve- 
locity can be regarded as uniform over the 
capillary cross-section. Thus, the radial compo- 
nents of the transport can be neglected in com- 
parison with the transport of the zone along the 
axis of the capillary. The current models of the 
background in idealized IEF consist of the sys- 
tem of ampholytes with equal diffusion coeffi- 
cients, D, equal mass of the components and 
similar derivative of the pH dependence of their 
effective mobility, d$d(pH) around their iso- 

0 x 0 x 

Fig. 1. Model of electrophoretic focusing of ampholytes in a natural pH gradient moving in a tapered capillary. A =Variable 
capillary cross-section; A,, A, = cross-sections at the inlet and at the detection point, respectively; y = separation coordinate, 
zone position along the capillary axis; yO, yd = zone positions at the inlet and at the detection point, respectively; x = distance 
from the zone centre in the direction of zone migration; c = ampholyte analytical concentration; 6(pH) = pH difference across the 
volume of the separation medium, V,; V = zone mean velocity along the separation coordinate. For further explanation, see text. 
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electric point, pl. The analyte amount is as- 
sumed to be small enough to make no essential 
contribution to the properties of the background. 
Because of the large number (up to thousands) 
of background components with approximately 
equally spaced isoelectric points, an essentially 
linear gradient is formed in the capillary of 
constant cross-section. The large number of 
components and a sufficiently large field strength 
imply that the zone width is small in comparison 
with the length of the capillary. Further, the 
contribution of solvent ions to the background 
conductivity is neglected. Assumptions of con- 
stant steepness of the pH gradient and constant 
field strength around the zone in a capillary with 
constant cross-section used previously in order to 
develop a theory simple enough for practical use 
do not, in fact, imply any serious oversimplifica- 
tion [14]. 

The above models are modified here in such a 
way that the pH gradient and the peak of the 
ampholytic analyte are allowed to move electro- 
phoretically in the capillary with a shallow taper. 
The electric current, I, is constant, which implies 
a constant volume displacement of the consid- 
ered zone. The pH difference, 6(pH), over the 
volume of the focusing medium, V,, and its 
conductivity are regarded as independent of the 
field intensity. Further, the ampholyte net dis- 
sociation is allowed to be small so that the local 
pH is not very different from the component 
isoelectric point, pl, which enables the derivative 
of the component mobility vs. pH dependence, 
dp/d(pH), to be regarded as equal to that at its 
pl. The mean effective mobilities of the com- 
ponents of the background and also that of the 
analyte are determined by the dpld(pH) param- 
eter and the composition of the leading elec- 
trolyte. As the diffusivities of both the back- 
ground components and analyte are here consid- 
ered to be the same, their mean effective mo- 
bilities can still be regarded as mutually equal. 
Hence it is accepted that the field intensity varies 
along the capillary due only to the current 
density. As the above conditions are not very 
different from the steady state in IEF, it is 
reasonable to regard the concentration profile of 
the zone as a Gaussian curve [8,12-181. 

3. Theory 

3.1. Relation of zone variance to the gradient of 
migration velocity 

In the initial part of the theory, let us describe 
the influence of the local migration velocity, u, 
on the zone width as outlined in the model 
description and Fig. 1. The zone is regarded as 
that of the analyte or that of the background 
component. As the local velocity can be re- 
garded as uniform over the capillary cross-sec- 
tion and the zone is close to the steady state, the 
radial concentration gradients can be neglected 
in comparison with the axial ones. When we 
accept the above assumptions, the continuity 
equation for the considered ampholyte can be 
written in a one-dimensional form: 

(1) 

where c is the local concentration of the am- 
pholyte. The transformation to the system in 
which the coordinate origin moves with the zone 
centre enables the concentration changes to be 
related to the position of the concentration 
maximum. In the new system, x is the distance 
from the zone centre, expressed as 

x=y-- 
I 

I 
Cdt (2) 

0 

where V is the mean zone velocity along the 
separation coordinate, V = dyldt. Actually, it is 
the local velocity of the zone concentration 
maximum. With the use of Eq. 2, Eq. 1 trans- 
forms to 

(3) 

As stated above, electrophoretic focusing with 
transport in the tapered capillary leads to non- 
steady-state zones. This means that the term 
dcldt in Eq. 3 is different from zero. Whereas in 
a capillary with constant cross-section the local 
steady-state concentration profile remains con- 
stant along the capillary axis [8], the local steady- 
state concentration profile in a tapered capillary 
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changes owing to the variations in the field 
strength and pH gradient. If the actual profile 
approaches the local steady-state profile very 
rapidly, it could be described by the relationships 
used in the description of the simple model of 
IEF. As the flux that equilibrates the difference 
between the actual profile and local steady state 
is only finite, the actual profile only tends to 
reach the local steady-state profile. Hence, the 
zone dispersion varies both by changes in the 
local steady-state profile and by the departure of 
the actual profile from the steady-state profile. 
As the concentration profile is regarded as Gaus- 
sian, the temporal changes in the local con- 
centration originated by both effects can be 
expressed with help of the apparent dispersion 
coefficient, D*, by the relation 

!p&*.!E) (4) 

The insertion of Eq. 4 into Eq. 3 yields 

z d [(D-D*).gq=C.$+(u-6).$ (5) 

In a tapered capillary, the local actual velocity, 
u, varies with the local cross-section, A, and thus 
with the x coordinate. As a shallow taper is 
considered, this variation can be described by a 
Taylor expansion. However, the shape of the 
capillary taper may be generally very different. 
In order to permit a simplified analytical solution 
of Eq. 5, we shall examine only a single kind of 
taper which generates a velocity variation de- 
scribed by only the first two terms in the expan- 
sion 

du 
u=v+x*- 

CIX 

By insertion of Eq. 6 into Eq. 5 and coupling the 
exact differential, we obtain 

dr 
d [p _ D*).!c] +!g (7) 

As long as the duldx term is treated as a 
constant in the entire capillary, Eq. 7 can be 
directly integrated. The assumption of a long 
capillary in comparison with the zone width 
means that the boundary conditions imply van- 

ishing of the concentration and the appropriate 
derivations towards both capillary ends. We 
obtain after integration, the use of the relation 
dcl(c dx) = d(ln c)ld_r and rearrangement, 

(8) 

The Gaussian concentration profile can be de- 
scribed by the relation 

-X2 
c = c,,, exp - ( > 2a2 

where (T is the standard deviation of the curve in 
length units and cmax is the concentration in the 
zone concentration maximum, where x = 0. 
Since, as will be verified further, u can be 
regarded as a constant along the whole capillary, 
from Eq. 9 it is for the particular zone 

(IO) 

By insertion of Eq. 10 into Eq. 8, we obtain the 
sought relation between the length-based zone 
variance and the constant velocity gradient. For 
further treatment, it is convenient to write this 
relation in the form 

D*-D du 

a2 
=- 

dx (II) 

Below, du/dx and D * will be expressed in terms 
of mobility, field strength and capillary taper. 

3.2. Gradient of migration velocity in a tapered 
capillary 

As the zone is transported only by the electro- 
migration, the component velocity is the product 
of the component effective mobility, /.L, and the 
local field strength, E: 

u=j.~E (12) 

The focusing occurs by means of two gradients in 
the direction of the transport, the mobility gra- 
dient and field strength [12,15,18]. As the curva- 
ture of the velocity gradient is shallow, the same 
is expected for the both of the above. Further, 
the zone width is regarded as small in com- 
parison with the capillary length. These gradients 
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can then be approximated as linear within the 
zone. The actual effective mobility can then be 
related to the mobility gradient, dp/dx, within 
the zone by the relation 

dP p=/i++x’~ (13) 

Let us remember again that fi is the component 
effective mobility at the zone maximum (see also 
Fig. 2). The mobility gradient of the ampholyte, 
dp/dx, can be related to the background pH 
gradient, d(pH)l&, by the equation 

dp dp d(N-0 -=-.- 
CI.X dM-0 CI-X (14) 

where dp/d(pH) is the gradient of the pH 
dependence of the component effective mobility. 
It is generally function of p but, as the am- 
pholyte fi is here constant and the zones are 
narrow, the dp/d(pH) term can be regarded as 
constant within the zone. This approximation is 
similar to that made in the simple IEF models 
with the only difference that the mean effective 
mobility of the zone centre is different from 

C 

C ma, 

0 t 

Fig. 2. Illustration of the zone mobility and the zone width. 
u, u, = Actual and local steady-state standard deviation of 
the zone concentration profile, respectively; c,,, = maximum 
ampholyte concentration in the zone; dpldx = derivative of 
the dependence of the ampholyte effective mobility on the 
distance along the separation coordinate; ,C = the zone mean 
effective mobility. For further explanation, see text. 

zero. As stated in the model description, the 
background pH gradient can be treated as the 
pH continuum. In the steady state, it generates a 
linear pH gradient in a capillary of constant 
cross-section. The influence of variable capillary 
cross-section on the local steepness of the pH 
gradient can be expressed as 

_= A %m d(pH) .- 
dx VB 

(15) 

where S(pH) is the pH difference over the 
gradient volume, VP. As the ratio 6(pH) /Vg is 
constant, it allows us to assume that the local pH 
gradient can be expressed by Eq. 15 also when 
the background composed of a series of zones of 
ampholytes moves in the capillary with a non- 
constant cross-section under conditions that are 
close to the steady state. It should be noted that 
Vg can be only a fraction of the capillary volume 
and only a small part of that volume which 
surrounds the particular zone can be taken into 
the consideration for the estimation of the local 
steepness of the pH gradient. Therefore, the 
volume-based steepness of the pH gradient need 
not be constant over the whole Vg. When this is 
the case, then, instead of G(pH)/V,, the volume 
steepness of the pH gradient can be written in 
terms of the small finite differences, A(pH)/AI$. 

The local field strength is related to A by the 
equation 

where I is the total electric current over the 
capillary cross-section and K is the background 
electrolyte conductivity. In conventional IEF, 
the background conductivity is inversely propor- 
tional to the degree of separation of the back- 
ground component or, in other words, to the 
field intensity. However, in IEF with electro- 
phoretic mobilization, this influence is reduced 
owing to the presence of a common counter ion 
which adjusts the non-zero mean effective 
mobility of both the background and the ana- 
lytes. In Section 4, the conditions will be 
specified under which the background conduc- 
tivity can be regarded as constant. Similarly to 
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the description of the local pH gradient, the 
conductivity need not be constant over the entire 
Vg. It is sufficient when the K of the background 
surrounding the considered zone is constant. 
Therefore, in subsequent considerations, a con- 
stant conductivity environment of the particular 
zone during its transport through the tapered 
capillary is taken as a first approximation. When 
the constant current is applied to a tapered 
capillary filled with a medium of the constant 
conductivity, we obtain for the derivative of the 
dependence of the field strength on x with use of 
Eq. 16 

dE d In A -C-E._ 
dx dx (17) 

For evaluation of the duldx term in Eq. 11, 
the product E dpldx has an important role. The 
combination of Eqs. 14, 15 and 16 gives 

E.&= dp %PH) 1 -.-.- 
dx d(pH) V, K 

It appears that, for the first approximation, the 
E dpldx term can be regarded as independent of 
the capillary cross-section; the increase in E by 
the capillary taper is just counterbalanced by the 
same decrease in the dpldx term. It further 
yields the invariability of the E dpldx term with 
respect to the position relative to the zone centre 
not only in a capillary with a constant cross- 
section but also in a tapered capillary. This 
conclusion has key importance in the treatment 
of zone variance in the next section. Further, 
when we take the E dpldx term as constant, it 
can be verified with the use of Eqs. 12,13 and 17 
that the sought relation for the velocity gradient, 
dvldx, is 

d(ln A) $=E.%-E-~.~ (19) 

Insertion of Eq. 19 in Eq. 11 yields the relation 

D*-D d(ln A) 
CT2 

=E.$_Ep.- 

Now, let the series of the zones move from the 
broader end of the capillary towards the nar- 
rower end. When this movement is very slow, 
the zones can almost adjust their concentration 
profiles to the local steady-state ones. The result 
of such a process would be a continuous increase 

in cln,, of every particular zone. According to the 
model adopted, the position with certain A is 
bound to the corresponding c,,, for every zone 
passed. However, when we are treating a par- 
ticular moving zone, the assumption of equal 
amounts of the gradient components is not 
necessary. Therefore, we can follow a single 
moving zone of an analyte in the same way as 
the zone of the background. 

which brings us closer to the final solution. As discussed in Section 3.1, the zones moving 

(20) 

3.3. Departure from the local steady state 

Now, let us consider the system with no mean 
electrophoretic transport of the zone, i.e., b = 0. 
It corresponds to the simple model of IEF, which 
means dcldt = 0 and D” = 0 in the steady state. 
Applying this condition to Eq. 20 yields the 
known relation for the length-based variance of 
the focused Gaussian zone in the steady state, of 
[8,12-161: 

-D $=---- S _ dw (21) 

Together with conclusion following from Eq. 18, 
the last relation indicates that, under the approx- 
imations made, the length-based width of the 
steady-state focused zone is independent on the 
capillary cross-section. Further, as dx = dy for 
the steady state (see Eq. 2), a, is constant along 
the entire capillary. This conclusion also sup- 
ports the assumptions used for the derivation of 
Eqs. 10 and 11. However, the steady-state vol- 
ume-based standard deviation expressed as Aa, 
decreases proportionally to the decrease in A. 
As the model adopted involves the background 
composed from the series of ampholyte zones 
with the same amounts of respective compo- 
nents, c,,, is proportionally higher for the zones 
positioned at the smaller cross-section relative to 
the zones focused at larger A. 
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in a tapered capillary do not reach the local 
steady-state profile. When comparing Eq. 21 
with Eq. 20, we can see that there are two terms 
more in the relation for the focusing with the 
finite mean zone velocity, i.e., D*la* and 
FE d(ln A)ldx, which make the difference from 
the description of the local steady state. The 
departure from the equation for the steady-state 
focusing arises from the fact that the transport of 
the zone through a tapered capillary prevents a 
steady state from occurring. 

First, the higher field strength in front of the 
zone continuously speeds up this part of the zone 
relative to the centre. Similarly, the zone rear, 
where the field strength is smaller relative to the 
centre, is slowed. This source of departure 
relative to the steady state is described by the 
second term on the right-hand side (RHS) of Eq. 
20. 

Second, as a, is constant and we examine a 
system with a small departure of the actual u 
from us, the ever decreasing capillary cross-sec- 
tion sweeps the concentration in the zone maxi- 
mum to an increase relative to the actual value. 
As the zone concentration profile remains Gaus- 
sian, this process seems like negative diffusion 
towards the zone centre. This contribution to the 
departure of the actual state from the steady 
state reflects the term D*la* in Eq. 20. 

Owing to this effect, the steady state remains 
just out of reach, with the actual zone width 
lagging slightly behind the local steady-state zone 
width. The diagram of concentration profiles in 
Fig. 2 illustrates the above description; the 
standard deviation of the actual concentration 
profile exceeds the local steady state one. 

Further, we shall discuss here the case when 
the actual zone width can be expressed as a 
multiple of ‘the local steady state width with a 
proportionality coefficient not very different 
from unity. This is advantageous when the de- 
parture from the steady state is small and finite 
over the entire capillary. Then the propor- 
tionality coefficient should also be constant. To 
conclude, we shall seek a shape of the capillary 
taper that should maintain the ratio of the actual 
to the local steady-state zone width constant and 
not very different from unity. 

It is conventional to express the changes in 
zone dispersion in terms of plate height, H. 
Then, we may relate D* to H and the zone mean 
velocity explicitly as 

D*+ 

Although the use of the theoretical plate 
concepts is particularly inappropriate for con- 
tinuous processes, the rate of variance genera- 
tion, H = da*/dy, is still of utmost significance. 
It applies also for techniques operating in a 
non-uniform, gradient mode [17-191. Thus, 
more universally, H may be regarded as a local 
increment of the zone variance. For a capillary 
with a non-constant cross-section, the volume- 
based changes in zone variance, ai, should 
apply. As a shallow taper is under consideration, 
the theoretical plate volume can be expressed as 
the product of H and A. Then, we can write for 
H 

1 do* 

H=A.dV (23) 

and for a,, 0; = UA. The length-based zone 
variance may be regarded here as constant, to ,a 
first approximation (see also Eqs. 18 and 21). 
Then, the volume-based changes of the zone 
variance are originated from the variation of the 
cross-section along the separation coordinate. As 
dV= A dy = A dx, we obtain from Eq. 23 

H=2u2.%!$9 
(24) 

It should be noted that, contrary to the common 
understanding, there is some difference in the 
meaning of H. In conventional kinetic processes, 

e.g., in chromatography, the local departure 
from equilibrium leads to an increase in the zone 
variance. Here, the causality is changed, i.e., the 
continuously forced change in the volume-based 
variance leads to the departure from its local 
steady-state value. 

Further, following Eq. 12, the local mean zone 
velocity is 

V=bE,, (25) 

where E,, is the field intensity at the zone centre. 
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For a narrow zone in a capillary with a shallow 
taper, E and E, can be related by 

E=E,,+x$ 

E,, in Eq. 25 may be approximated by E when 
the second term on the RHS of Eq. 26 is much 
smaller than the first, ]xdEldx( G lEOI. When 
applied to a zone with width 4u, this condition 
can be written with help of Eq. 17 as 

zone variance to the local steady-state one. 
Apparently, the smaller E is, the closer is the 
zone to the local steady state; zero E means 
achieving the local steady state. The magnitude 
of E can obtained by the treatment of the 
equations for oz and al. From combination of 
Eqs. 21, 29 and 30, we arrive at the relation 
between the capillary taper, the effective mobili- 
ty gradient and Q as a simple expression achiev- 
ing the desired purpose: 

d(ln A) E d/J& 
(27) dr=z.-- 

CL 
(31) 

In Section 4, the conditions for the use of E 
instead of E, will be further specified. With the 
last approximation, the insertion of Eqs. 24 and 

By insertion of Eqs. 14 and 15 into Eq. 31, we 
obtain for the steepness of the capillary taper 
exolicitlv 

25 in Eq. 22 yields the sought relation-for D*: ’ ’ 

d(ln A) 
d(llA) l -d@d(pH) I 

D* = bEa .- 
dx 

(28) -Z--=z* /i 
.- 

VP 
(32) 

Finally, insertion of Eq. 28 into Eq. 20 yields the 
expression for the actual zone variance: 

A relation similar to Eq. 32 can be obtained by 
evaluation of the changes in the resolution of the 
zones focused with migration in a tapered capil- 

J,= D lary [20]. The last equation can be used- to 

E 2b 
[ 

d(ln A) d/l. 
(29) calculate the relation of the capillary geometry to 

.-__ 
dr dx I the acceptable departure from the steady state as 

The last equation is more general than Eq. 21 
a function of other experimental parameters. 

because both for the zero net mobility and/or for 
no taper, it converts to the equation for a,. 
However, it should be kept in mind that Eq. 29 
is derived for conditions where the denominator 
of the RHS is treated as constant or, in other 
words, for a special kind of capillary taper. 
Nevertheless, the last equation shows that the 
focused zone can be obtained, provided that the 
first term in the brackets ‘is smaller than the 
second and, for a small departure of the actual 
zone width from the local steady-state one, it 
should be even much smaller. For a more ex- 
plicit formulation of this relation, let us intro- 
duce the departure from the local steady state, l , 
by the equation 

3.4. Relation between the capillary geometry 
and the departure from the local steady state 

Eq. 32 relates the local capillary taper to E and 
important parameters of focusing such as the 
gradient volume and pH difference, the analyte 
mobility and the mobility vs. pH dependence. 
For the evaluation of the feasibility of the 
method, the dependence of the departure from 
the steady state on the entire capillary geometry 
is necessary. The following calculations are 
formulated so that the geometrical parameters 
are expressed as explicit functions of other 
experimental parameters including e, which is 
regarded as a constant determined by the accept- 
able departure of the actual zone profile from 
the local steady-state one (see Eq. 30). 

2 

E=&z. 

cr2 
(30) 

This term not only simplifies the subsequent 
equations, but also explicitly relates the actual 

Because, for the sought geometry, the whole 
RHS of Eq. 32 and the zone volume displace- 
ment are regarded as positive constants along the 
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entire length of the capillary, the x variable can 
be substituted back to the y coordinate. After 
integration, we have for the dependence of the 
local cross-section on the y coordinate 

12 - V 

* =y’:’ -d@:(pH) .S(pH) (33) 

When we solve the equation obtained for the 
particular capillary dimensions, let us recall that 
the cross-section A, is at the beginning of the 
capillary, y = y,, and the cross-section A,, is at 
the detection point, y = y, (see Fig. 1). Then, 
the capillary length is L = y, - y,. Further, it is 
convenient to relate the changes in the capillary 
cross-section to its narrowest value, A,. There- 
fore, we introduce the ratio of the inlet cross- 
section to the detection cross-section as a ratio, 

4: 

q = A,IA d (34) 

Then, the particular solution of Eq. 32 has the 
form 

1 1 _ E. -dCL/d(PH) %PH) . * L .- 
42 I;i VP d 

(35) 

The parameter q is also related to the capillary 
volume, V,, which can be obtained by integra- 
tion: 

v, = 
I 

yd 

* dy (36) 
Yo 

By insertion of Eqs. 33 and 34 into Eq. 36, we 
obtain after integration 

lnq=$. -dp/d(pH) v, 
@ - 7. I 

g 
(37) 

Usually, capillaries of circular cross-section are 
used with A = d, where r is the local capillary 
radius. With help of Eqs. 33 and 37, the sought 
dependence of r on y can be formulated as a 
relation involving only the geometrical parame- 
ters: 

r= ($L)“’ 

which indicates the decrease in the capillary 
radius with the square root of the y coordinate. 

The needed V, and q variables should be opti- 
mized with the help of the previous equations. 

4. Discussion 

For the discussion of the calculation proce- 
dure, Eq. 32 has a key position. It relates the 
capillary taper to the departure from the steady 
state, E, steepness of the pH gradient, G(pH)/V,, 
and the relative change in compound mobility vs. 
pH. Note that no electrical variables enter this 
equation except for their influence on the as- 
sumption of a narrow zone. As postulated in 
course of the calculation, the departure from the 
steady state which can be expressed in terms of E 
is set constant .along the whole capillary. The 
second term in Eq. 32 is the property of the 
focused substance and the magnitude of its 
effective mobility adjusted by the leading elec- 
trolyte . Therefore, it is independent of the 
capillary shape. The volume-based steepness of 
the pH gradient can be considered as constant 
for small departures from the steady state. 
Hence the left-hand side (LHS) of Eq. 32 can be 
regarded as a constant which determines the 
capillary geometry described by Eqs. 33-38. On 
the other hand, the invariability of the LHS of 
Eq. 32 justifies some approximations made 
through the calculations. Namely, together with 
Eq. 16, it leads to invariability of the dE/dr term 
in Eq. 17, which further justifies Eq. 26 and 
leads to invariability of the duldx term expressed 
by Eq. 19. Finally, for the found capillary shape, 
it also means that no higher terms need be 
neglected when writing the relation for the actual 
u (Eq. 6). 

The assumption of constant conductivity has 
been used throughout this theory to facilitate 
and simplify the calculations. Now, the signifi- 
cance of this assumption will be discussed in a 
semi-quantitative manner. In the model adopted, 
the changes in average effective mobility of the 
ampholyte within the zone have contributions 
from changes in the ratios of uncharged and 
positively and negatively charged forms of the 
particular ampholyte with mutual overlap of the 
neighbouring zones. According to the model 
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adopted, the separation of the zone maxima in 
volume units is regarded as independent of field 
strength and capillary cross-section. Hence the 
mutual overlap is determined by the zone width 
in volume units. When there is no counter ion, 
the relative content of both ionized forms of the 
ampholyte decreases in the same way as the zone 
volume becomes smaller. When some strong 
common counter ion (e.g., positive) is used, the 
state can be achieved when the fraction of one of 
the charged forms of the ampholyte (i.e., posi- 
tive) decreases faster than the other and finely 
becomes negligibly small. With further zone 
sharpening, the fraction of the other dissociated 
form (i.e., negative) remains constant in order to 
maintain the finite mean mobility that is neces- 
sary for transport of the whole gradient. To 
conclude, the relative invariability of the conduc- 
tivity of the zone environment with the field 
intensity can be achieved when most of the 
respective ampholyte of the background is ion- 
ized with charge of only one sign. Then, its 
effective charge cannot vary with the zone width 
and then it also cannot be function of field, and, 
under a constant total current, a function of 
cross-section and position along the capillary 
length. As most of the component is accumu- 
lated within the zone width expressed as 4a (see 
Fig. 2), such a condition can be described by the 
relation 

--ii 
2a< dpldx 

This relation shows that under the conditions 
prescribed, a change in the sign of the ampholyte 
effective charge occurs at a point that is more 
than 2a distant from the zone centre and hence 
only a negligible fraction of the total ampholyte 
mass has a charge sign opposite to that of most 
of the component. It is apparent that in IEF 
where zero net mobility is adjusted, the back- 
ground conductivity is always dependent on the 
zone shape. On the other hand, in focusing with 
electrophoretic mobilization where the common 
counter ion adjusts the finite net effective mobili- 
ty, it is possible to achieve a certain u where the 
conductivity remains constant with further de- 
crease in u. Now, as the zones are close to the 

steady state, let us estimate the desired con- 
ditions from the combination of Eqs. 14, 21 and 
39. In the case of migration of the gradient 
towards the cathode, we obtain for E 

E > 40. -Wd(pW W-9 .- 
CL fi dx 

Let us examine the real conditions close to the 
detection point as the reference and the narrow- 
est, most critical place. We take typical values 
for focusing of ampholytes with electrophoretic 
mobilization towards the cathode as the am- 
pholyte mean effective charge z = 0.1 and E = 50 
V mm-’ [8]. With the use of the Nernst equa- 
tion, we can estimate the first term on the RHS 
of Eq. 40 as 4 RTIzF = 1 V. The second term 
does not exceed 10 pH_’ for biprotic ampholytes 
and z =i: 0.1. As the gradient volume is usually 
only a fraction of the capillary volume in meth- 
ods with gradient mobilization, let us take Vg = 
V, /5. Further, we take V,lA, = 200 mm, which 
relates the discussed tapered capillary to the 
typical length of a capillary with constant cross- 
section. The typical pH difference across the pH 
gradient is taken as S(pH) = 5 pH. Then, Eq. 15 
gives 0.125 pH mm-’ for the third term of the 
RHS of Eq. 40. Together, this means that E 
should be B1.25 V mm-’ at y = y,. Actually, E 
can be expected to be up to 50 V mm-’ at the 
detection point [8], which is nearly two orders of 
magnitude higher than Eq. 40 needs. Conse- 
quently, with the help of Eqs. 33 and 34, the 
conductivity should not vary considerably with 
changes in A even at q up to about 50 in the 
discussed case. It can be noted that when the 
background components can be treated as weak 
electrolytes with similar D and equally spaced 
pK, values [8], the conductivity of the back- 
ground should not vary with the shape of the 
zone of its components. 

The zone profile at the focusing in a pH 
gradient in a background with a linear conduc- 
tivity gradient was calculated by Svensson [12] 
for @ = 0 and dE/dx = 0. Under these condi- 
tions, he found the equation for the skew con- 
centration distribution. When, for a shallow 
conductivity gradient, his result (Eq. 34 in Ref. 
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[12]) is taken and the logarithm is expanded as 
ln( 1 + a) = Q + a* / 2 - a3 / 3 with neglect of higher 
terms, we obtain in the present notation 

ln(k)=$[l+i(l-$)I 
s 

(41) 

where ~~ is the conductivity at the zone centre. 
As the change in conductivity within a narrow 
zone can be expected to be only a few per cent, 
the actual concentration profile can be still 
approximated by a Gaussian curve. 

Further, with decrease in A, the field strength 
increases and the conductivity can be constant or 
can decrease when the zone approaches the 
narrow parts of the capillary. At constant I, a 
field strength increase higher than corresponds to 
the decrease in A can be expected when the 
assumption of constant conductivity is not appro- 
priate. Hence, although the calculations may 
become complicated with variation of the con- 
ductivity, narrower zones than those predicted 
by Eqs. 21 and 29 can be expected. 

From Eqs. 27 and 31, the condition for ap- 
proximating E,, by E is 

(42) 

which is surely met when the system obeys Eqs. 
39 and 40 as E is expected to be much smaller 
than unity. 

As the amount of the ampholyte in the zone 
and the length-based zone width remain constant 
during migration in a tapered capillary, the 
product of the local concentration and the local 
cross-section should have the same profile in- 
dependent of the zone position in the capillary 
(see Fig. 1, bottom). Hence, as the zone passes 
through the tapered capillary, the concentration 
in the zone maximum increases proportionally to 
the decrease in cross-section (see also discussion 
following Eq. 21). Explicitly, the ratio of the 
inlet to the outlet concentration in the zone 
maximum is expected to be equal to q. 

The acceptable numerical value of q may be 
estimated from the semi-quantitative evaluation 
of Eq. 37. For ampholytic analytes such as 
proteins, the absolute value of the second term 

on the RHS is 10 pH_’ or higher for z = 0.1. 
When we take values of Vg and 6(pH) the same 
as those for the evaluation of E at the detection 
point, it appears that the ratio q may be up to 
hundreds even for accepted E as small as 0.01 < 
E CO.1. 

The example of capillary dimensions with V,l 
A,, = 200 mm and q = 10 can be calculated as 
follows. The combination of Eqs. 35 and 37 
yields the length of the tapered capillary, L = 
V,(l - llq)(A, In q) = 78 mm, which is a factor 
of 0.39 smaller than the length of a cylindrical 
capillary of the same V, and A,. When we take 
the values above, we obtain E = 0.0184 from Eq. 
37. With help of Eq. 30, this leads to the 
conclusion that the actual o can be expected to 
be only 1% higher than the local steady state uS 
in the discussed case. It is apparent that a higher 
acceptable E permits a higher q (see Eq. 37). For 
example, departure from the steady state due to 
the capillary taper expressed as Q = 0.5 may be 
practically acceptable because, according to Eq. 
30, it represents a (T/CT~ ratio of 1.4 (see Fig. 2). 
It can be concluded that there need not be a 
substantial decrease in the separation efficiency 
in comparison with other possible sources of the 
departure of the actual zone width from the 
theoretical local steady state value expressed by 
Eq. 21. 

The course of the ratio of the local capillary 
radius to the radius at the detection point, rd, 
with the position along the capillary is shown for 
q values of 5, 10 and 20 in Fig. 3. For the 
calculation of the curves, Eq. 38 is modified to 

(43) 

where the VLIAd ratio is taken as constant and 
equal to 200 mm. In viewing Fig. 3, it should be 
kept in mind that the curves are drawn with 
Lh, = 5, whereas in reality the values of this 
ratio can be expected to be up to two orders of 
magnitude higher. For example with q = 20 and 
typical rd = 40 pm, L/r, = 1600. Thus, even the 
shape with q = 20 can still be regarded as a 
shallow taper along the entire capillary. 
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Fig. 3. Examples of calculated capillary geometry for V,l 
A, = 200 mm. r/r,, = Ratio of local capillary radius to the 
radius at the detection point; y - y, = distance from the 
capillary inlet; q = ratio of inlet capillary cross-section to the 
cross-section at the detection point. 

Eqs. 32, 33 and 37 clearly show that the 
increase in the allowable taper steepness and/or 
the decrease in E can be achieved by a decrease 
in the zone mean effective mobility. Thus, the 
smaller @ is, the steeper the decrease in the 
capillary cross-section (or the higher q) can be 
with the same other parameters including e. As 
follows from the model description, the mean 
effective mobility of an ampholytic analyte and 
that of the background components can be 
conveniently controlled by the leading elec- 
trolyte composition. 

5. Conclusions 

A simplified model of the focusing of an 
ampholyte zone that migrates electrophoretically 
in a tapered capillary has been suggested. An 
approximate solution of the continuity equation 
is possible by assuming a constant conductivity 
environment of the zone during its electropho- 
retie transport within a capillary with a shallow 
taper. It was found that focusing in the tapered 
capillary should maintain constant the departure 

of the actual zone width from the local steady- 
state zone width and acceptably small even for a 
considerable ratio of the inlet to outlet capillary 
cross-section, provided that the local capillary 
cross-section is indirectly proportional to the 
migration length coordinate. The equations de- 
rived enable one to show the magnitude of the 
possible gain in operational parameters such as 
the decrease in the voltage and pressure drop 
needed, which will be discussed elsewhere to- 
gether with changes in the zone resolution [20]. 

The method described opens up the way to 
increase the number of separable compounds 
without limitation from the excessive high volt- 
age needed. The intended use of a constant 
current may obviate the problems of record 
interpretation associated with operation under a 
constant potential drop. 

The discussed non-steady-state process con- 
tinuously transports, separates and focuses the 
Gaussian zones of the ampholytes or of weak 
electrolytes, so it can be seen as intermediate 
between typical electrophoretic techniques in- 
cluding CZE, ITP and IEF. 

6. References 

[l] F.M. Everaerts, T.P.E.M. Verheggen and F.E.P. Mik- 
kers, J. Chromutogr., 169 (1979) 21. 

[2] T.P.E.M.. Verheggen and F.M. Everaerts, J. Chroma- 
togr., 249 (1982) 221. 

[3] V Dolnfk, M. Deml and P. B&k, J. Chromutogr., 320 
(1985) 89. 

[4] F. Foret, V. Sust&k and P. B&k, J. Microcol. Sep., 2 
(1990) 229. 

[S] F. Foret, E. Stikii and B. Karger, J. Chromutogr., 608 
(1992) 3. 

[6] D.S. Stegehuis, H. Irth, U.R. Tjaden and J. van der 
Greef, J. Chromtogr., 538 (1991) 393. 

[7] D.S. Stegehuis, U.R. Tjaden and J. van der Greef, J. 
Chromatogr., 591 (1992) 341. 

[8] K. &is, J. Microcol. Sep., 5 (1993) 469. 
[9] S. HjertCn and M. Zhu, J. Chromatogr., 346 (1985) 

265. 
[lo] S. Hjerten, J. Liao and K. Yao, 1. Chrotnutogr., 387 

(1987) 127. 
[ll] S. Hjerttn, K. Elenbring, F. Kil&r, J.L. Liao, A.J.C. 

Chen, C.J. Siebert and M.D. Zhu, J. Chromatogr., 403 
(1987) 47. 

[12] H. Svensson, Actu Chem. Stand., 15 (1961) 325. 



K. &ai.s I J. Chromatogr. A 6&4 (1994) 149-161 161 

[13] M. Almgren, Chem. Ser., 1 (1971) 69. 
[14] H. Rilbe, Ann. New York Acad. Sci., 20!2 (1973) 11. 
[15] J.C. Giddings and H. Dahlgren, Sep. Sci. Technol., 6 

(1971) 345. 
[16] J.C. Giddings, Sep. Sci. Technol., 14 (1979) 871. 
(171 J.C. Giddings, Dynamics of Chromatography, Part I, 

Marcel Dekker, New York, 1963. 

[U] J.C. Giddiigs, Unified Separation Science, Wiley, New 
York, 1991. 

(191 J.C. Giddings, Anul. Chem., 35 (1963) 353. 
[20] K. slais, 1. Microcol. Sep., submitted for publication. 


